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We study the effect of nonlinearity on systems with periodic parity-time (PT) symmetry, and show that

nonlinearity can transform the system from broken to full PT symmetry and vice versa. Furthermore, we

show that even when the nonlinearity is insufficient to induce a transition from broken to full PT

symmetry, still, the wave functions neither decay nor diverge, despite the fact that the system has a

complex eigenvalue spectrum. Rather, the amplitudes of the wavefunctions oscillate around the transition

point. Our results apply to a wide variety of systems in optics and beyond.
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For decades, it was believed that physical phenomena
in quantum systems must be described by Hermitian
Hamiltonians, since it was thought that only they always
have real eigenvalues. However, in 1998 it was shown that
non-Hermitian systems obeying parity-time symmetry
(PT) can have real spectra, despite a complex potential
[1,2]. While an experimental realization of such quantum
systems has yet to be demonstrated, in optics PT symmetry
is realizable, with the complex potential arising from opti-
cal gain and loss. Indeed, PT-symmetric optical potentials
were proposed with two coupled waveguides [3,4], one
with gain and the other with an identical amount of loss.
Experimental demonstrations of PT-symmetric optical
systems were pioneered by using passive elements [5],
by inducing gain or loss via photorefractive two-wave
mixing [6], and, recently, in a temporal photonic
PT-symmetric lattice [7]. The concepts of PT symmetry
were also extended to electrical circuits [8,9], observing
nonreciprocal behavior [8] and using PT symmetry
to bypass the bandwidth theorem [9]. Subsequently,
periodicity was introduced, making PT-symmetric lattices
and adding new phenomena [10–12], such as double
refraction, assymetric diffraction, and unidirectional
invisibility [13]. Likewise, adding nonlinearity was pre-
dicted to support novel phenomena, such as solitons in
PT structures [13–17].

One of the key features of any PT-symmetric system is
the transition of the eigenvalue spectrum from being real to
complex. Whether the spectrum is real or not is determined
by a single parameter: the magnitude of the imaginary part
of the potential relative to the real part. When that parame-
ter is below a specific threshold, the spectrum is completely
real, and the system is fully PT symmetric. When that
parameter is above that threshold, the spectrum has com-
plex eigenvalues, and the system has broken PT symmetry.
At the transition, the system has exceptional points [4], at
which two eigenvectors coalesce, becoming self-orthogonal
[18–21]. Clearly, nonlinearity can have a major impact on
the PT-symmetry of a system, because it can change the
ratio between the real and imaginary parts of the

susceptibility. Thus far, nonlinear PT-symmetric systems
were explored in the context of solitons [14–17,22,23],
breathers [24], and stable nonlinear modes in few-
waveguide systems [25]. However, the PT-symmetry-
breaking transition has always been set by the linear part,
while the effects of nonlinearity on the PT transition have
not been studied.
Here, we show that the PT transition can be induced or

suppressed by introducing nonlinearity. We show that, for a
linear system with broken PT symmetry, it is possible to
induce the PT transition into a completely real spectrum of
nonlinear eigenmodes by increasing nonlinearity, or the
opposite—from full to broken PT symmetry by increasing
nonlinearity of the opposite sign. In addition, in the regime
of broken-PT symmetry with insufficient nonlinearity to
induce the transition, we observe periodic oscillatory dy-
namics with the peak power neither diverging nor decay-
ing, despite the fact that the linear system has a complex
spectrum. This oscillatory dynamics is related to the non-
linear PT phase transition in the band structure. These
findings pave the way to nonlinear control over the PT
transition and associated phenomena: exceptional points,
divergence of their associated wave functions, unidirec-
tional power flow, etc. [4,13,20,26].
We begin with a linear description of our system, using

the ð1þ 1ÞD paraxial wave equation, in dimensionless
units:

i@zc þ @2xc þ VðxÞc ¼ 0; (1)

where c is the wave function, z is the spatial coordinate
along the propagation axis, x is the transverse coordinate,
and VðxÞ corresponds to the refractive index change.
Importantly, Eq. (1) is equivalent to the Schrödinger equa-
tion [27]; thus, the subsequent results are applicable to any
system obeying Schrödinger dynamics. For the system to
be PT symmetric, VðxÞ must be symmetric to successive
action of the parity (P) and time-reversal (T) operators:
PTfVðxÞg ¼ V�ð�xÞ ¼ VðxÞ, while VðxÞ need not obey P
or T, separately. Here, we use a periodic potential with
period D ¼ � [11]:
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VðxÞ ¼ 4ðcos2ðxÞ þ iV0 sinð2xÞÞ; (2)

where V0 is the strength of the imaginary part of the
potential relative to its real part [Fig. 1(a)]. Because the
potential is periodic, its eigenfunctions obey Bloch peri-
odicity: they are of the form ’ðxÞ ¼ uðxÞeikx, where uðxÞ is
D periodic, and k is the Bloch wave number. As an ex-
ample, the intensity pattern of the first two modes with k ¼
0:87�=D and V0 ¼ 0:52 is shown in Fig. 1(b). Calculating
the energy spectrum of the potential in Eq. (2), one can see
that the eigenvalues (energies) are strictly real for V0 � 0:5
[14], while for V0 > 0:5 some are complex. In this latter
case, the system has broken PT symmetry despite the fact
VðxÞ obeys the PT-symmetry prerequisites (symmetric
Re½VðxÞ� and antisymmetric Im½VðxÞ�). Such a complex
spectrum is shown in Fig. 1(c) for V0 ¼ 0:52 (first two
bands). Notice that, while the center of the Brillouin zone
contains purely real energies, at the edges [k ¼ �ð�=DÞ]
the energies are complex. Figures 1(d) and 1(e) show the
Brillouin zone edge, centered at k ¼ �=D. The size of the
region with complex energies increases as V0 increases.
This effect is most pronounced in the first two bands
[Figs. 1(d) and 1(e)], although the transition can occur
simultaneously in all bands [16].

Next, we show that adding nonlinearity can induce a
transition from broken to full PT symmetry. Adding Kerr
nonlinearity, our system is described by

i@zc þ @2xc þ VðxÞc þ n2jc j2c ¼ 0; (3)

where n2 is the sign of the nonlinearity—n2 ¼ 1 (n2 ¼
�1) for focusing (defocusing) nonlinearity, respectively.
In these units, the magnitude of the nonlinear effects is

manifested in the amplitude of c . We calculate the non-
linear band structure: the extended eigenmode solutions to
the nonlinear eigenvalue problem, obeying Bloch period-
icity. Thus, we solve

�c ¼ @2xc þ VðxÞc þ n2jc j2c ; (4)

with c ðxÞ ¼ uðxÞeikx, where uðxÞ is D periodic, k is the
Bloch wave number, and � is the energy. We define the
power contained in the wave function in a single unit cell as
P ¼ R

unit cell jc j2dx, and solve Eq. (4) for all k’s for each
P. Here, P is a measure of the strength of the nonlinearity.
We employ the self-consistency method for the calculation
of the nonlinear extended states [28,29]. The nonlinear
spectra for focusing nonlinearity (n2 ¼ 1) for P varying
from 0.3 to 0.5 are shown in Figs. 2(a)–2(h). Notice that,
for P ¼ 0:3 [Figs. 2(a) and 2(b)] the spectrum looks quali-
tatively the same as the linear one [Fig. 1(c)]; however, the
size of the region with complex energies is smaller, and the
maximal imaginary energy is also smaller. As we increase

(b)(a)

(c)

(d) (e)

FIG. 1 (color online). (a) Real (solid blue) and imaginary
(dashed green) parts of the periodic potential VðxÞ.
(b) Intensity wave functions of the first two guided modes for
k ¼ 0:87. Solid: mode with gain. Dashed: mode with loss. The
arrow between the dashed vertical lines indicates the unit cell of
VðxÞ, highlighting the spatial scale. (c) Real (top) and imaginary
(bottom) parts of the eigenvalue spectrum of VðxÞ. (d),(e)
The spectrum shown in (c), centered at the Brillouin zone
edge k ¼ �=D.

FIG. 2 (color online). (a)–(h) Real (left column) and imaginary
(right column) parts of the nonlinear spectrum with nonlinearity
of the focusing type n2 ¼ 1 and V0 ¼ 0:52. (a),(b) P ¼ 0:3, (c),
(d) P ¼ 0:4, (d),(f) P ¼ 0:45, and (g),(h) P ¼ 0:5. (i) Size of the
complex region of the spectrum �k vs the power P for potential
VðxÞ with V0 ¼ 0:52. ( j) Gap of real spectrum for potential VðxÞ
with V0 ¼ 0:49 vs the power P with nonlinearity of the defocus-
ing type n2 ¼ �1.
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P, this trend continues, and the region in the Brillouin zone
where the energies are complex becomes smaller. The
variation of the size of the complex region of the spectrum
as the power P is increased is summarized in Fig. 2(i). For
P> 0:5, the region where the energies are complex has
disappeared, and the whole spectrum is now real. Clearly,
the nonlinearity has induced a PT transition from broken
PT symmetry to a fully PT-symmetric state, with a real
spectrum. The opposite is also true: nonlinearity can break
the PT symmetry of a system. In this case, the nonlinearity
is of the defocusing type (n2 ¼ �1). To show this, we
begin with a linear system that is PT symmetric with V0 ¼
0:49. The system has a real spectrum, with a gap between
the first and second bands. As we increase P, the gap
narrows, until it closes and complex eigenvalues emerge
[Fig. 2(j)].

Next, we study the nonlinear dynamics of a wave packet
near the transition point, specifically the dynamics of the
transition from a complex to a real spectrum, for the
focusing case. In order to avoid modulation instability in
our simulations [28], we do this by propagating extended
waves with a well-defined Bloch wavenumber k. Such a
restriction does not allow perturbations of spatial wave-
length longer than 1=k to be amplified, suppressing modu-
lation instability. To see the nonlinear transition, we need
to choose k such that the linear system has a complex
eigenvalue at that k. For a large enough nonlinearity, the
eigenvalues corresponding to that particular k are real. We
choose k ¼ 0:87�=D. First, we launch an eigenstate of the
nonlinear system that has a real eigenvalue, with power
P ¼ 0:3. The results of the numerical propagation simula-
tion of that eigenstate are shown in Figs. 3(a) and 3(b),
where it is evident that the intensity [Fig. 3(a)] and power

[Fig. 3(b)] are invariant throughout propagation. This
proves that indeed when the nonlinearity has induced the
transition from broken to full PT symmetry, the propaga-
tion dynamics is stationary as expected, as the eigenvalues
have become real. Let us now examine what happens
when we launch the same wave but with very low power,
P ¼ 0:001, which is far too low to induce the transition.
The propagation dynamics of such a nonlinear mode is
shown in Figs. 3(d) and 3(e). Because the power is very
low, the nonlinearity has a negligible effect and the propa-
gation at the beginning is linear. Since the system has
broken PT symmetry, the eigenvalues are complex and
the wave gains power. The power increases until it passes
the power level at which the nonlinear eigenvalues are real.
The power continues to increase, until it reaches a certain
maximum value and then it starts to decrease until the
power becomes very low again. Then the dynamics is
linear again, and the cycle starts over. These dynamics
are shown in Figs. 3(d) and 3(e). Such oscillatory dynamics
continue for very long distances.
It is important to study the stability of the nonlinear

modes in the regime where the nonlinearity has induced
full PT symmetry, and also of the nonlinear oscillatory
modes. Linear stability analysis reveals that all the modes
in the nonlinearly induced fullPT symmetry [e.g., Figs. 3(a)
and 3(b)] are stable, and these modes are characterized by a
real propagation constant (even though in the linear system
they reside in the broken PT-symmetry regime) [30]. In
fact, we find that the dynamics of perturbations around these
eigenmodes is also PT symmetric [30]. In the nonlinear
oscillatory regime [e.g., Figs. 3(d) and 3(e)], propagation
simulations indicate that stable oscillatory dynamics should
continue indefinitely.
The nonlinear oscillatory dynamics can be explained by

examining the motion of the center-of-mass (c.m.) during
propagation [Fig. 3(f)]. The evolution starts at the center of
the unit cell. Because its initial power is low, we can
decompose it into the two linear complex eigenmodes:
one with eigenvalue with a positive imaginary part (gain)
and one with a negative imaginary part (loss). Naturally,
the eigenstate with gain resides mostly in the gain half of
the potential [c:m: < 0 in Fig. 3(f)], while the lossy eigen-
state resides mostly in the loss half [c:m: > 0 in Fig. 3(f)].
Thus, following the linear propagation, the lossy eigenstate
quickly dies out and only the gain eigenstate survives,
which shifts the c.m. downwards. When the power contin-
ues to increase, the system passes the nonlinear transition
point and the system becomes PT symmetric; hence, all of
its nonlinear eigenvalues become real [31]. Thus, a "gain
eigenmode" no longer exists, and the wave packet is
attracted to the center of the unit cell, where the potential
is deepest. However, when it reaches the center, it has
upwards momentum, which drives it into the lossy region.
There, the power decreases until it reaches levels where the
nonlinearity is insignificant and the system again has

FIG. 3 (color online). (a),(b),(c) Evolution of the intensity,
total power, and position of the "center of mass" of the nonlinear
eigenstate during propagation, for power levels that transform
the system from broken to full PT symmetry. (d),(e),(f) Same as
(a)–(c) for the wave with low initial power that does not induce
the PT transition.
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complex eigenvalues. Thus, the wave is again attracted to
the gain region, and the entire dynamics continues periodi-
cally. This nonlinear oscillatory dynamics resembles that
of a harmonic oscillator, albeit a non-ideal one since the
c.m. oscillations are not strictly sinusoidal. The nonlinear
oscillations shown in Figs. 3(d)–3(f), which always occur
when the initial state has low power and broken PT sym-
metry, seem to resemble the behavior of the breathers
found when the system is fully PT symmetric [24].
However, the differences between the two phenomena
are profound. Namely, the nonlinear breathers arise from
interference between nonlinear modes occurring strictly in
the full PT-symmetric regime, as their eigenvalues are real,
whereas the nonlinear oscillations shown in Fig. 3 arise
from crossing back and forth across the PT-transition
point.

Finally, we compare the maximum power in the dy-
namic simulations for a specific k, to the power at which
the eigenvalues at that k become real. We expect these two
values to be strongly correlated, since both reflect the
nonlinear PT transition. In Fig. 4(a), the solid curve
represents the maximal power in dynamic simulations
(for initially weak power) vs k, and the dotted curve is
the power at which the spectrum at each k becomes real.
Both curves follow the same trend, although they do not
coincide. This follows from the fact that the oscillatory
dynamics causes the power to "overshoot" the
PT-transition point. However, if we multiply the dynamic
maximum power by factor of 0.5, we get an excellent
match between the two curves [Fig. 4(b)]. This proves
that the dynamic evolution is dictated by the nonlinear
PT transition. The factor of 0.5 is not universal, namely,
it is potential dependent. For potentials that follow Eq. (2),
the factor 0.5 is consistent for all values of V0. However, if
we compare the dynamic PT transition to the PT transition
in the Bloch spectrum for a different potential structure, for
example, a rectangular-shaped lattice, we get an exact
match like Fig. 4(b), but with a factor of 0.63.

Analysis of the results shows that, for the nonlinear PT
transition to occur, the wave functions of the two modes of

the broken PT system (the mode in the gain region and the
mode in the loss region) must have a strong spatial overlap,
as is the case in the potential analyzed here. In such cases,
the nonlinearity strongly affects the modes and the cou-
pling between them. A nonlinear PT transition cannot
happen in systems where the modes are spatially separated.
This brings an important insight: a nonlinear PT transition
does not occur in systems modeled by a standard tight-
binding (coupled-mode) model with an on-site nonlinear-
ity, such as the discrete nonlinear Schrödinger equation
with an on-site cubic term and alternating gain and loss
[25]. In such a system, the nonlinearity affects the on-site
energy only, but inherently cannot capture the effects of
nonlinear coupling between the modes guided in the gain
and the loss regions, which is required for the nonlinear PT
transition. Instead, the effects of nonlinearity in such a
system are completely different [25]: while it can cause
the emergence of modes with real energies, it cannot trans-
form complex energies into real ones. In fact, in such cases
the nonlinearity can even cause modes with real energies to
bifurcate into modes that have complex energies, breaking
the PT symmetry [32]. In sharp contrast, in systems with
strong spatial overlap between the modes, the nonlinearity
can transform the ‘‘complex modes’’ into ‘‘real modes’’
which maintain their shape and amplitude throughout
propagation. We emphasize that this spatial modal overlap
(required for having a nonlinear PT transition) occurs
naturally in any continuous physical system. The standard
tight-binding model with on-site nonlinearity fails to
describe such effects, but one can extend tight binding to
include effects of nonlinearity in the coupling coefficients
[30]. In such a case, the nonlinear PT transition can be
observed even using simple models [30].
Before closing, we examine the impact of modulation

instability on the nonlinear dynamics. We employ simula-
tions of the full lattice (not just in a single unit cell, as in
Fig. 3), such that we capture also the very low (transverse)
wave number modulation occurring on scales of multiple
unit cells. The results are presented in [30]. We find that,
up to 1% noise, the single unit cell oscillations presented in
Fig. 3 represent the true dynamics in the system up to
several nonlinear oscillations. Eventually, modulation
instability prevails, but before this occurs the nonlinear
dynamics is dominated by the oscillations shown in
Fig. 3 [30].
In conclusion, we have shown that in systems obeying

PT symmetry, nonlinearity can overcome broken symme-
try, transforming a linear system that has complex eigen-
values into a nonlinear one with strictly real eigenvalues
(and vice versa). We described this transition by calculat-
ing the nonlinear Bloch spectrum for a periodic system,
showing that as we increase the strength of the nonlinear-
ity, the imaginary part of the complex eigenvalues
decreases until it vanishes. In addition, we simulated the
nonlinear dynamics of waves in the broken PT-symmetry

FIG. 4 (color online). Comparison of the ratio between the
maximum power in the dynamic simulations for a specific k, to
the power level at which the eigenvalues at that specific k
become real. (a) Simulated evolution of the maximal power.
Blue circles: power level at which the eigenvalues at that specific
k become real. (b) Same as (a) but with red curve multiplied by a
factor of 0.5.
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regime and whose power is insufficient to induce the
transition to full PT symmetry. We find these nonlinear
waves to exhibit oscillations in their power and intensity
structure. Altogether, the nonlinear PT transition presented
here happens in systems with strong overlap between the
spatial modes associated with the gain and loss regions,
and, consequently, the nonlinearity strongly affects the
coupling between these modes. The importance of this
nonlinear PT transition, among other things, is in the
ability to design systems that can switch from being power
conservative to systems with gain, by changing the power
of the wave alone. Future work will explore higher dimen-
sions, other potentials allowing for nonlinearPT transition,
and experimental realizations of a nonlinear PT system
where the transition from broken to full PT symmetry is
induced through by the wave itself.

This work was supported by the Israeli Center of
Research Excellence (I-CORE) ‘Circle of Light’, by the
Israel Science Foundation, by the Binational USA-Israel
Science Foundation (BSF), and by an Advanced Grant
from the European Research Council.

[1] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[2] C.M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev.
Lett. 89, 270401 (2002).

[3] R. El-Ganainy, K.G. Makris, D.N. Christodoulides, and
Z.H. Musslimani, Opt. Lett. 32, 2632 (2007).

[4] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett.
101, 080402 (2008).

[5] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.
Volatier-Ravat, V. Aimez, G.A. Siviloglou, and D.N.
Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).
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